
Inference-Time Scaling for Flow Models via
Stochastic Generation and Rollover Budget Forcing

Jaihoon Kim∗ Taehoon Yoon∗ Jisung Hwang∗ Minhyuk Sung
KAIST

{jh27kim,taehoon,4011hjs,mhsung}@kaist.ac.kr

Logical

Spatial Relation

Counting Comparison

Aesthetic Concept Erasure

“Every painting in the gallery is framed and hung
straight, except for one that is hanging crooked.”

“Two cups, three paintings, four lamps,
and four bananas decorated the art studio.”

“The arcade machine is bigger than the
television but smaller than the refrigerator.”

“A large suitcase is placed beside an open closet,
with a folded jacket resting on top where a pair of

shoes sit side by side in front of it.”
“Duck”

(+) “A nurse”
(−) “Stethoscope, hat, mask”

“Five horses, three cars, one train, five airplanes.”

NFEs : 500NFEs : 100 NFEs : 200 NFEs : 300 NFEs : 400
Stable Diffusion 2

NFEs : 2500NFEs : 10
FLUX + Ours

RSS : 27 RSS : 14 RSS : 10 RSS : 5 RSS : 1 RSS : 0 RSS : 36

Figure 1. Diverse applications of our inference-time scaling method. Our inference-time scaling method extends the capabilities of
a pretrained flow model [25] to generate images that more precisely align with user preferences. More computation during inference
improves alignment, reducing Residual Sum of Squares (RSS) over time (top row). Our flow-based method outperforms diffusion models,
even with five times fewer number of function evaluations (NFEs) (top-right). For compositional text-to-image generation applications
(“logical”, “comparison”, “spatial relation”), we use the reward from VQAScore [28] to ensure precise alignment with the input text, where
the description is particularly challenging for typical text-to-image generative models to satisfy (see the results on the left side of each case).
We use the object detection score [31] for the "counting" application and the aesthetic score [44] for the "aesthetic" application. For “concept
erasure”, the reward is the number of removed concepts computed using VLM [3] queries. The red box denotes the results of our method.

Abstract

We propose an inference-time scaling approach for pre-
trained flow models. Recently, inference-time scaling has

*Equal contribution.

gained significant attention in LLMs and diffusion models,
improving sample quality or better aligning outputs with user
preferences by leveraging additional computation. For dif-
fusion models, particle sampling has allowed more efficient
scaling due to the stochasticity at intermediate denoising
steps. On the contrary, while flow models have gained popu-

1

larity as an alternative to diffusion models–offering faster
generation and high-quality outputs in state-of-the-art im-
age and video generative models–efficient inference-time
scaling methods used for diffusion models cannot be directly
applied due to their deterministic generative process. To
enable efficient inference-time scaling for flow models, we
propose three key ideas: 1) SDE-based generation, enabling
particle sampling in flow models, 2) Interpolant conversion,
broadening the search space and enhancing sample diversity,
and 3) Rollover Budget Forcing (RBF), an adaptive alloca-
tion of computational resources across timesteps to maxi-
mize budget utilization. Our experiments show that SDE-
based generation, particularly variance-preserving (VP)
interpolant-based generation, improves the performance
of particle sampling methods for inference-time scaling in
flow models. Additionally, we demonstrate that RBF with
VP-SDE achieves the best performance, outperforming all
previous inference-time scaling approaches. Project page:
flow-inference-time-scaling.github.io/.

1. Introduction
Over the past years, scaling laws of AI models have mainly
focused on increasing model size and training data. How-
ever, recent advancements have shifted attention toward
inference-time scaling [49, 51], leveraging computational re-
sources during inference to enhance model performance.
OpenAI o1 [38] and DeepSeek R1 [11] exemplify this
approach, demonstrating consistent output improvements
with increased inference computation. Recent research in
LLMs [37] attempting to replicate such improvements has in-
troduced test-time budget forcing, achieving high efficiency
with limited token sampling during inference.

For diffusion models [46, 48], which are widely used for
generation tasks, research on inference-time scaling has been
growing in the context of reward-based sampling [21, 27, 45].
Given a reward function that measures alignment with user
preferences [23] or output quality [28, 44], the goal is to find
the sample from the learned data distribution that best aligns
with the reward through repeated sampling. Fig. 1 showcases
diverse applications of inference-time scaling, enabling the
generation of faithful images that accurately align with com-
plex user descriptions involving objects quantities, logical
relationships, and conceptual attributes. Notably, naïve gen-
eration from text-to-image models [25, 43] often fails to
fully meet user specifications, highlighting the effectiveness
of inference-time scaling.

Our goal in this work is to extend the inference-time scal-
ing capabilities of diffusion models to flow models. Flow
models [29] power state-of-the-art image [14, 25] and video
generation [7, 60], achieving high-quality synthesis with
few inference steps, enabled by trajectory stratification tech-
niques during training [32]. Beyond just speed, recent pre-
trained flow models, equipped with enhanced text-image

embeddings [41] and advanced architectures [14], signifi-
cantly outperform previous pretrained diffusion models in
both image and video generation quality.

Despite their advantages in generating high-quality results
more efficiently than diffusion models, flow models have an
inherent limitation in the context of inference-time scaling.
Due to their ODE-based deterministic generative process,
they cannot directly incorporate particle sampling at inter-
mediate steps, a key mechanism for effective inference-time
scaling in diffusion models. Building on the formulation
of stochastic interpolant framework [1], we adopt an SDE-
based sampling method for flow models at inference-time,
enabling particle sampling for reward alignment.

Furthermore, we observe that converting an ODE to its
corresponding SDE in the generative process of a flow model
does not provide sufficient diversity in particle sampling to
effectively seek high-reward samples. To expand the explo-
ration space, we consider not only stochasticity but also the
choice of the interpolant itself. While typical flow models
use a linear interpolant, diffusion models commonly adopt a
Variance-Preserving (VP) interpolant [17, 48]. Inspired by
this, for the first time, we incorporate the VP interpolant into
the generative process of flow models and demonstrate its
effectiveness in increasing sample diversity, ultimately en-
hancing the likelihood of discovering high-reward samples.

We emphasize that while we propose converting
the generative process of a pretrained flow model to
align with that of diffusion models—i.e., VP-SDE-based
generation—inference-time scaling with flow models offers
significant advantages over diffusion models. Flow models,
particularly those with rectification fine-tuning [32, 33], pro-
duce much clearer expected outputs at intermediate steps,
enabling more precise future reward estimation and, in turn,
more effective particle sampling.

We additionally explore a strategy for tight budget en-
forcement in terms of the number of function evaluations
(NFEs) of the velocity prediction network. Previous particle-
sampling-based inference-time scaling approaches for dif-
fusion models [27, 45] allocate the NFEs budget uniformly
across timesteps in the generative process, which we empiri-
cally found to be ineffective in practice. To optimize budget
utilization, we propose Rollover Budget Forcing, a method
that adaptively reallocates NFEs across timesteps. Specifi-
cally, we perform a denoising step upon identifying a new
particle with a higher expected future reward and allocate
the remaining NFEs to subsequent timesteps.

Experimentally, we demonstrate that our inference-time
SDE conversion and VP interpolant conversion enable parti-
cle sampling in flow models, leading to consistent improve-
ments in reward alignment across two challenging tasks:
compositional text-to-image generation and quantity-aware
image generation. Additionally, our Rollover Budget Forc-
ing (RBF) provides further performance gains, outperform-

2

flow-inference-time-scaling.github.io/

ing all previous particle sampling approaches. We also
demonstrate that for differentiable rewards, such as aesthetic
image generation, integrating RBF with a gradient-based
method [8] creates a synergistic effect, leading to further
performance improvements.

In summary, we introduce an inference-time scaling
method for flow models, analyzing three key factors and
proposing the best options for each:
• ODE vs. SDE: We introduce an SDE-based generative

process for flow models to enable particle sampling.
• Interpolant: We demonstrate that replacing the linear in-

terpolant of flow models with Variance Preserving (VP)
interpolant expands the search space, facilitating the dis-
covery of higher-reward samples.

• NFEs Allocation: We propose Rollover Budget Forcing
that adaptively allocates NFEs across timesteps to ensure
efficient utilization of the available compute budget.

2. Related Work
2.1. Reward Alignment in Diffusion Models
In the literature of diffusion models, reward alignment ap-
proaches can be broadly categorized into fine-tuning-based
methods [5, 9, 39, 55, 57, 58] and inference-time-scaling-
based methods [6, 12, 27, 45, 56]. While fine-tuning dif-
fusion models enables the generation of samples aligned
with user preferences, it requires fine-tuning for each task,
potentially limiting scalability. In contrast, inference-time
scaling approaches offer a significant advantage as they can
be applied to any reward without requiring additional fine-
tuning. Moreover, they can also be applied to fine-tuned
models to further enhance alignment with the reward. Since
our proposed approach is an inference-time scaling method,
we focus our review on related literature in this domain.

Furthermore, for differentiable rewards, gradient-based
methods [4, 8, 15, 16, 54, 59] have been extensively stud-
ied. We note that inference-time scaling can be integrated
with gradient-based approaches to achieve synergistic per-
formance improvements.

2.2. Particle Sampling with Diffusion Models
The simplest iterative sampling method that can be applied
to any generative model is Best-of-N (BoN) [49–51], which
generates N batches of samples and selects the one with the
highest reward. For diffusion models, however, incorporat-
ing particle sampling during the denoising process has been
shown to be far more effective than naïve BoN [27, 45]. This
idea has been further developed through various approaches
that sample particles at each step. For instance, SVDD [27]
proposed simply selecting the particle with the highest re-
ward at every step. CoDe [45] extends this idea by selecting
the highest-reward particle only at specific intervals. On
the other hand, methods based on Sequential Monte Carlo
(SMC) [6, 12, 21, 56] employ a probabilistic selection ap-

proach, in which particles are sampled from a multinomial
distribution according to their importance weights. Despite
the success of particle sampling approaches for diffusion
models, they have not been applicable to flow models due to
the absence of stochasticity in their generative process. In
this work, we present the first inference-time scaling method
for flow models based on particle sampling by introducing
stochasticity into the generative process and further increas-
ing sampling diversity through trajectory modification.

2.3. Inference-Time Scaling with Flow Models
To our knowledge, SoP [36], a concurrent work to ours, is
the only inference-time scaling method proposed for flow
models, which applies a forward kernel to sample particles
from the deterministic sampling process of flow models.
However, SoP does not explore the possibility of modifying
the reverse kernel, which could enable more diverse particle-
sampling-based methods [21, 27, 45]. To the best of our
knowledge, we are the first to investigate the application
of particle sampling to flow models through the lens of the
reverse kernel.

3. Problem Definition and Background
3.1. Inference-Time Reward Alignment
Given a pretrained flow model that maps the source distribu-
tion, a standard Gaussian distribution p1, into the data distri-
bution p0, our objective is to generate high-reward samples
x0 ∈ Rd from the pretrained flow model without additional
training–a task known as inference-time reward alignment.
We denote the given reward function as r : Rd → R, which
measures text alignment or user preference for a generated
sample. Following previous works [24, 52, 53], our objective
can be formulated as finding the following target distribution:

p∗0 = argmax
q

Ex0∼q [r(x0)]︸ ︷︷ ︸
Reward

−βDKL [q(x0)|p0(x0)]︸ ︷︷ ︸
KL Regularization

, (1)

which maximizes the expected reward while the KL diver-
gence term prevents p∗0(x0) from deviating too far from
p0(x0), with its strength controlled by the hyperparameter
β. As shown in previous work [40], the target distribution
p∗0 can be computed as:

p∗0(x0) =
1

Z
p0(x0) exp

(
r(x0)

β

)
, (2)

where Z is a normalization constant. We present details in
Appendix A.1. However, sampling from the target distribu-
tion is non-trivial.

A notable approach for sampling from the target distribu-
tion is particle sampling, which maintains a set of candidate
samples—referred to as particles—and iteratively propagates
high-reward samples while discarding lower-reward ones.
When combined with the denoising process of diffusion mod-
els, particle sampling can improve the efficiency of limited

3

computational resources in inference-time scaling. In the
next section, we review particle sampling methods used in
diffusion models and explore insights for adapting them to
flow models.

3.2. Particle Sampling Using Diffusion Model
A pretrained diffusion model generates data by drawing an
initial sample from the standard Gaussian distribution and
iteratively sampling from the learned conditional distribution
pθ(xt−∆t|xt). Building on this, previous works [26, 53]
have shown that data from the target distribution in Eq. 2
can be generated by performing the same denoising process
while replacing the conditional distribution pθ(xt−∆t|xt)
with the optimal policy:

p∗θ(xt−∆t|xt) =
pθ(xt−∆t|xt) exp

(
v(xt−∆t)

β

)
∫
pθ(xt−∆t|xt) exp

(
v(xt−∆t)

β

)
dxt−∆t

, (3)

where the details are presented in Appendix A.2. We denote
v(·) : Rd → R as the optimal value function that estimates
the expected future reward of the generated samples at cur-
rent timestep. Following previous works [4, 8, 21, 27], we ap-
proximate the value function using the posterior mean com-
puted via Tweedie’s formula [42], given by v(xt) ≈ r(x0|t),
where x0|t := Ex0∼pθ(x0|xt) [x0].

Since directly sampling from the optimal policy distri-
bution in Eq. 3 is nontrivial, one can first approximate
the distribution using importance sampling while taking
pθ(xt−∆t|xt) as the proposal distribution:

p∗θ(xt−∆t|xt) ≈
K∑
i=1

w
(i)
t−∆t∑K

j=1 w
(j)
t−∆t

δ
x
(i)
t−∆t

(4)

{x(i)
t−∆t}

K
i=1 ∼ pθ(xt−∆t|xt),

where K is the number of particles, w
(i)
t−∆t =

exp
(
v(x

(i)
t−∆t)/β

)
is the weight, and δ

x
(i)
t−∆t

is a Dirac dis-
tribution. Li et al. [27] proposed an approximate sampling
method for the optimal policy by selecting the sample with
the largest weight from Eq. 4.

Notably, a key factor in seeking high-reward samples us-
ing particle sampling is defining the proposal distribution to
sufficiently cover the distribution of high-reward samples.
Consider a scenario where high-reward samples reside in a
low density region of the original data distribution, which is
common when generating complex or highly specific sam-
ples that deviate from the mode of the pretrained model
distribution. In this case, the proposal distribution must have
a large variance to effectively explore these low density re-
gions. This highlights the importance of the stochasticity of
the proposal distribution, which has been instrumental in the
successful adoption of particle sampling in diffusion models.
In contrast, flow models [29] employ a deterministic sam-
pling process, where all particles xt−∆t drawn from xt are

Figure 2. Comparison of Linear-SDE and VP-SDE. Starting
from the same initial noise latent, we generate 50 samples using
Linear-ODE, Linear-SDE, and VP-SDE.

identical. This restricts the applicability of particle sampling
methods in flow models.

To this end, we propose an inference-time approach that
introduces stochastic sampling into the generative process of
flow models to enable particle sampling. We first transform
the deterministic sampling process of flow models into a
stochastic process (Sec. 4.2). We further expand the search
space by modifying the sampling trajectory of flow models
to align with that of diffusion models (Sec. 4.3).

Additionally, previous particle sampling methods in dif-
fusion models allocated a fixed computational budget (i.e., a
uniform number of particles) across all denoising timesteps,
potentially limiting exploration. We explore sampling with
the rollover strategy, which adaptively allocates compute
across timesteps during the sampling process (Sec. 5).

4. SDE-Based Generation Using Flow Models

In this section, we review flow and diffusion models within
the unified stochastic interpolant framework (Sec. 4.1) and
introduce our inference-time approaches for efficient particle
sampling in flow models (Sec. 4.2 and 4.3).

4.1. Background: Stochastic Interpolant Frame-
work

At the core of both diffusion and flow models is the construc-
tion of probability paths {pt}0≤t≤1, where xt ∼ pt serves
as a bridge between x1 ∼ p1 and x0 ∼ p0:

xt = αtx0 + σtx1, (5)

where αt and σt are smooth functions satisfying α0 = σ1 =
1, α1 = σ0 = 0, and α̇t < 0, σ̇t > 0; we denote the dot
as a time derivative. This formulation provides a flexible
choice of interpolant (αt, σt) which determines the sampling
trajectory.

4.2. Inference-Time SDE Conversion
Flow models [29, 32] learn the velocity field ut : Rd → Rd,
which enables sampling of x0 by solving the Probability

4

Flow-ODE [48] backward in time:

dxt = ut(xt)dt. (6)

The deterministic process in Eq. 6 accelerates the sampling
process enabling few-step generation of high-fidelity sam-
ples. However, as discussed in Sec. 3.2, the deterministic
nature of this sampling process limits the applicability of
particle sampling in flow models.

To address this, we transform the deterministic sampling
process into a stochastic process. Song et al. [48] proposed
the reverse-time SDE that shares the same marginal proba-
bility densities as the deterministic process in Eq. 6:

dxt = ft(xt)dt+ gtdw, (7)

ft(xt) = ut(xt)−
g2t
2
∇ log pt(xt), (8)

where ft(xt) and gt represent the drift and diffusion coef-
ficient, respectively, and w is the standard Wiener process.
Ma et al. [35] have shown that gt, which determines the level
of stochasticity of the proposal distribution, can be freely
chosen within the stochastic interpolant framework [1, 20]
(details in Appendix B). Note that in the case where gt = 0
the process reduces to deterministic sampling in Eq. 6.

Using the velocity ut(xt) predicted by a pretrained flow
model, the score function∇ log pt(xt) appearing in the drift
coefficient ft(xt) can be computed as:

∇ log pt(xt) =
1

σt

αtut(xt)− α̇txt

α̇tσt − αtσ̇t
. (9)

This enables the conversion of the deterministic sampling to
stochastic sampling, which we refer to as inference-time
SDE conversion. Given the drift coefficient term ft(xt)
and diffusion coefficient gt, the proposal distribution in the
discrete-time domain is derived as follows:

pθ(xt−∆t|xt) = N (xt − ft(xt)∆t, g2t∆t I). (10)

Since flow models utilize the linear interpolant (αt = 1 −
t, σt = t), we refer to the generative processes of the flow
models using Eq. 6 and Eq. 7 as Linear-ODE and Linear-
SDE.

In Fig. 2 (left), we visualize the sampling trajectories of
Linear-ODE and Linear-SDE. The samples generated using
Linear-ODE are identical and collapse to a single point, re-
stricting exploration. In contrast, Linear-SDE introduces
sample variance, allowing for broader exploration and in-
creasing the likelihood of discovering high-reward samples.

However, in practice, we empirically observe that the
search space of Linear-SDE remains constrained. In Fig. 3 (a-
b), we visualize images sampled from Linear-ODE and
Linear-SDE using FLUX [25], respectively. As discussed
previously, the particles drawn from the proposal distribu-
tion of Linear-ODE are identical. While Linear-SDE in-
troduces variations across different particles, we find that

(a) Linear-ODE (b) Linear-SDE (c) VP-SDE

Figure 3. Sample variance test using FLUX [25] under linear
and Variance Preserving (VP) interpolant. All samples share the
same initial latent. Prompt: “A steaming cup of coffee”.

the sample variance remains insufficient for effectively ex-
ploring low-density regions. In the next section, we intro-
duce inference-time interpolant conversion, which further
increases the search space.

4.3. Inference-Time Interpolant Conversion
To address the limitation of Linear-SDE, we draw inspi-
ration from the effective use of particle sampling in dif-
fusion models, where we identified a key difference: the
interpolant. While the forward process in diffusion mod-
els follows the Variance Preserving (VP) interpolant (αt =

exp−
1
2

∫ t
0
βsds, σt =

√
1− exp−

∫ t
0
βsds), where βs is a pre-

defined variance schedule, flow models instead follow a lin-
ear interpolant. To bridge this gap, we introduce inference-
time interpolant conversion, which transforms the linear
interpolant into a VP interpolant.

As shown in the previous works [20, 30], we note that
given a velocity model ut based on an interpolant (αt, σt)
(e.g., linear), one can transform the vector field and gener-
ate a sample based on a new interpolant (ᾱs, σ̄s) (e.g., VP)
at inference-time. The two paths x̄s = ᾱsx0 + σ̄sx1 and
xt = αtx0 + σtx1 are connected through scale-time trans-
formation:

x̄s = csxts ts = ρ−1(ρ̄(s)) cs = σ̄s/σts , (11)

where ρ(t) = αt

σt
and ρ̄(s) = ᾱs

σ̄s
define the signal-to-noise

ratio of the original and the new interpolant, respectively.
The velocity for the new interpolant is given as:

ūs(x̄s) =
ċs
cs

x̄s + csṫsuts

(
x̄s

cs

)
, (12)

ċs =
σts

˙̄σs − σ̄sσ̇ts ṫs
σ2
ts

ṫs =
σ2
ts

(
σ̄s ˙̄αs − ᾱs ˙̄σs

)
σ̄2
s (σts α̇ts − αts σ̇ts)

.

Plugging the transformed velocity into the SDE in Eq. 7
after computing the score using Eq. 9 gives our inference-
time interpolant conversion. Since the new trajectory follows
the VP interpolant, we refer to this as VP-SDE. We visualize
VP-SDE sampling in Fig. 2 (right). At inference-time, we
query the velocity of the new interpolant from the original
interpolant (purple arrow).

5

In Fig. 3 (c), we visualize the sample variance under VP-
SDE using FLUX [25]. As shown in the figure, VP-SDE
produces significantly more diverse samples compared to
Linear-SDE, which exhibits smaller variations across par-
ticles. This property of VP-SDE effectively expands the
search space, improving particle sampling in flow models.

Note that this takes the opposite approach of previous
works on diffusion models, which aimed to convert the SDE
into an ODE [34, 47, 48] and transform trajectories into
straighter paths [20, 30] for faster generation. Importantly,
while we modify the generative process of flow models to
align with that of diffusion models, inference-time scaling
with flow models still provides distinct advantages. The
rectified trajectories of flow models [25, 32, 33] allow for
a much clearer posterior mean via Tweedie’s formula [42],
leading to more precise future reward estimation and, in
turn, more effective particle filtering. Furthermore, when
generating samples using the SDE in Eq. 7, we enhance
exploration by taking smaller time intervals during the early
stages of the generative process, where the variance level
is high, then gradually increasing the interval to accelerate
generation–enabled by the few-step generation ability of
flow models (details in Appendix C).

5. Rollover Budget Forcing
In this section, we propose a new budget-forcing particle
sampling strategy to maximize the use of limited compute
in inference-time scaling. To the best of our knowledge,
previous inference-time scaling approaches based on particle
sampling for diffusion models [27, 45] use a fixed number
of particles throughout all denoising steps.

However, our analysis shows that this uniform allocation
leads to inefficiency, where the NFEs required at each denois-
ing step to obtain a sample xt−∆t with a higher reward than
the current sample xt significantly varies across different
runs. We present the analysis results in Appendix C.

This motivates us to adopt a rollover strategy that adap-
tively allocates NFEs across timesteps. First, given the
total NFEs budget, the NFEs quota Q is allocated uni-
formly across timesteps. At each timestep, if a particle
xt−∆t achieves a higher reward than the current sample xt

within the NFEs quota, we immediately proceed to the next
timestep, rolling over the remaining NFEs. Otherwise, we
select the particle with the highest expected future reward
from the current set of particles as done by Li et al. [27]. We
present the pseudocode of our method, RBF, in Appendix E.
In the next section, we demonstrate the effectiveness of RBF,
along with SDE conversion and interpolant conversion.

6. Applications
In this section, we present the experimental results of particle
sampling methods for inference-time reward alignment. In
Appendix, we present i) aesthetic image generation, ii) im-
plementation details of the search algorithms, iii) additional

L.O. L.S. V.S.
“A mouse pad has two pencils on it,

the shorter pencil is green and the longer one is not”

“Eight chairs”

Figure 4. Qualitative results of inference-time SDE and inter-
polant conversion. Employing SDE and VP interpolant conversion
effectively scales model performance. Each column presents results
from Linear-ODE (L.O.), Linear-SDE (L.S.), and VP-SDE (V.S.).

qualitative results, and iv) scaling comparison of Best-of-N
(BoN) and RBF.

6.1. Experiment Setup
Tasks. In this section, we present the results for the fol-
lowing applications: compositional text-to-image generation
and quantity-aware image generation, where the rewards
are non-differentiable. For the differentiable reward case,
we consider aesthetic image generation (Appendix D.1). In
compositional text-to-image generation, we use all 121 text
prompts from GenAI-Bench [19] that contain three or more
advanced compositional elements. For quantity-aware im-
age generation, we use 100 randomly sampled prompts from
T2I-CompBench++ [18] numeracy category.

For all applications, we use FLUX [25] as the pretrained
flow model. We fix the total number of function evaluations
(NFEs) to 500 and set the number of denoising steps to 10,
which allocates 50 NFEs per denoising step. For comparison
with diffusion models, we use Stable Diffusion 2 [43]. For
diffusion models, we additionally report a case where the
number of denoising steps is set to 50 (totaling 2, 500 NFEs),
allocating five times the compute budget compared to the
flow model. As a reference, we also include the results of
the base pretrained models without inference-time scaling.
Baselines. We evaluate inference-time search algorithms
discussed in Sec. 2, including Best-of-N (BoN), Search over
Paths (SoP) [36], SMC [21], CoDe [45], and SVDD [27].
We categorize BoN and SoP as Linear-ODE-based methods,
as their generative processes follow the deterministic process
in Eq. 6. For SMC, we adopt DAS [21]; however, when the
reward is non-differentiable, we use the reverse transition
kernel of the pretrained model as the proposal distribution.

6

Table 1. Quantitative results of compositional image generation. † denotes the given reward used in inference-time scaling. For
particle-based sampling methods, the relative improvement in each cell is computed with respect to the Linear-ODE case. The best result in
the given and held-out reward is highlighted by bold, and the runner-up is underlined. L.O., L.S., and V.S. indicate Linear-ODE, Linear-SDE,
and VP-SDE, respectively. * denotes results with 50 denoising steps.

Metric

Diffusion Model Flow Model

SD2 SD2∗ SVDD [27] FLUX BoN SoP
[36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)SD2 SD2∗

V.S. V.S. L.O. L.O. L.S. V.S. L.O. L.S. V.S. L.O. L.S. V.S. L.O. L.S. V.S.
VQAScore†

[28] ↑
0.671 0.647 0.867 0.886 0.726 0.879 0.844 0.841 0.862

+2.50%

0.877
+4.28%

0.788 0.887
+12.56%

0.914
+15.99%

0.788 0.893
+13.32%

0.915
+16.12%

0.788 0.900
+14.21%

0.925
+17.39%

Inst. BLIP [10] ↑
(held-out)

0.741 0.739 0.790 0.799 0.775 0.820 0.799 0.815 0.811
–0.49%

0.836
+2.58%

0.786 0.815
+3.69%

0.839
+6.74%

0.789 0.813
+3.04%

0.847
+7.35%

0.789 0.813
+3.04%

0.843
+6.84%

Aesthetic
Score [44] ↑

5.107 5.115 5.181 5.213 5.338 5.162 5.254 5.233 5.016 5.156 5.190 5.023 5.177 5.200 5.052 5.249 5.200 5.072 5.237

BoN SoP [36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)

“Three mugs are placed side by side; the two closest to the faucet each contain a toothbrush, while the one furthest away is empty.”

“Five ants are carrying biscuits, and an ant that is not carrying biscuits is standing on a green leaf directing them.”

Figure 5. Qualitative results of compositional text-to-image generation. At inference-time, we guide the generation process using
VQAScore [28] as the given reward, which evaluates the image-text alignment.

6.2. Compositional Text-to-Image Generation
Evaluation Metrics. In this work, we refer to the re-
ward used for inference-time scaling as the given reward.
Here, the given reward is VQAScore, measured with CLIP-
FlanT5 [28], which evaluates text-image alignment. For the
held-out reward, which is not used during inference, we eval-
uate the score using a different model, InstructBLIP [10].
Additionally, we evaluate aesthetic score [44] to assess the
quality of the generated images.

Inference-Time SDE and Interpolant Conversion. The
quantitative and qualitative results of compositional text-
to-image generation are presented in Tab. 1 and Fig. 5, re-
spectively. As discussed in Sec. 4.2, the deterministic sam-
pling process of flow models limits the efficiency of particle
sampling. The results in Tab. 1 support this, showing that
Linear-SDE consistently improves the given reward over the
Linear-ODE case for all particle sampling methods. How-
ever, the limited search space of Linear-SDE, as discussed
in Sec. 4.3, leads to suboptimal particle sampling perfor-
mance, falling behind Linear-ODE-based sampling meth-

ods, BoN and SoP [36], in the held-out reward. Through
inference-time interpolant conversion, VP-SDE further im-
proves performance across all particle sampling methods.
Notably, particle sampling methods generate high-reward
samples without significantly compromising image quality,
as reflected in the aesthetic score, which remains compara-
ble to the base FLUX model [25]. Lastly, we note that the
quality of the pretrained Stable Diffusion 2 (SD2) [43] falls
behind that of FLUX [25], even with 5× the compute bud-
get (SD2∗), highlighting the importance of adopting particle
sampling through flow models.

Qualitatively, SDE conversion and interpolant conversion
shown in Fig. 4 bring consistent performance improvements.
Note that these results are obtained by using SVDD [27];
however, a similar trend is observed across all other particle
sampling methods (see Appendix G.1).

Rollover Budget Forcing. As discussed in Sec. 5, instead
of fixing the number of particles throughout the denoising
process, we explore adaptive budget allocation through RBF.
Quantitatively, we demonstrate that budget forcing provides
additional performance improvements, outperforming all

7

Table 2. Quantitative results of quantity-aware image generation. † denotes the given reward used in inference-time scaling. For
particle-based sampling methods, the relative improvement in each cell is computed with respect to the Linear-ODE case. The best result in
the given and held-out reward is highlighted by bold, and the runner-up is underlined. L.O., L.S., and V.S. indicate Linear-ODE, Linear-SDE,
and VP-SDE, respectively. * denotes results with 50 denoising steps.

Metric

Diffusion Model Flow Model

SD2 SD2∗ SVDD [27] FLUX BoN SoP
[36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)SD2 SD2∗

V.S. V.S. L.O. L.O. L.S. V.S. L.O. L.S. V.S. L.O. L.S. V.S. L.O. L.S. V.S.

RSS† [31] ↓ 22.200 18.590 5.820 5.140 11.430 1.760 3.460 4.870 1.140
+76.59%

1.070
+78.03%

11.740 1.400
+88.07%

1.090
+90.72%

11.740 1.140
+90.29%

0.840
+92.84%

11.740 0.890
+92.42%

0.540
+95.40%

Accuracy
[31] ↑

0.020 0.050 0.470 0.470 0.130 0.580 0.470 0.530 0.630
+18.87%

0.620
+16.98%

0.090 0.650
+622.22%

0.650
+622.22%

0.090 0.660
+633.33%

0.750
+733.33%

0.090 0.700
+677.78%

0.800
+788.89%

VQAScore [28]
↑ (held-out)

0.523 0.532 0.617 0.648 0.648 0.756 0.740 0.731 0.768
+5.06%

0.756
+3.42%

0.633 0.772
+21.96%

0.778
+22.91%

0.633 0.761
+20.22%

0.765
+20.85%

0.633 0.761
+20.22%

0.769
+21.48%

Aesthetic
Score [44] ↑

5.060 5.223 4.983 5.081 5.182 5.420 5.676 5.464 5.304 5.506 5.179 5.471 5.571 5.179 5.447 5.576 5.179 5.343 5.581

BoN SoP [36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)

“Seven balloons, four bears and four swans.”

“Six horses and six deer and four balloons.”

Figure 6. Qualitative results of quantity-aware image generation. At inference-time, we guide generation using the negation of RSS
(Residual Sum of Squares) as the given reward, which measures the discrepancy between detected and target object counts.

other particle sampling methods in the given reward. Qualita-
tively, Fig. 5 shows that our method, RBF efficiently searches
for high-reward samples that best align with the given text
prompt (see Appendix G.2 for additional qualitative results).

6.3. Quantity-Aware Image Generation
Evaluation Metrics. Here, the given reward is the nega-
tion of the Residual Sum of Squares (RSS) between the
target counts and the detected object counts, computed using
GroundingDINO [31] and SAM [22] (details in Appendix F).
Additionally, we report object count accuracy, which eval-
uates whether all object quantities are correctly shown in
the image. For the held-out reward, we report VQAScore
measured with CLIP-FlanT5 [28]. As in the previous appli-
cation, we evaluate the quality of the generated images using
the aesthetic score [44].
Results. The quantitative and qualitative results of
quantity-aware image generation are presented in Tab. 2
and Fig. 6, respectively. The trend in Tab. 2 align with those
in Sec. 6.2, demonstrating that SDE conversion and inter-
polant conversion synergistically enhance the identification

of high-reward samples. Notably, particle sampling meth-
ods with Linear-SDE already outperform Linear-ODE-based
methods, while interpolant conversion further enhances accu-
racy, achieving a 4 ∼ 5× improvement over the base FLUX
model [25]. Notably, our RBF achieves the highest accuracy,
outperforming all other particle-based sampling methods.
Qualitatively, Fig. 6 shows that RBF effectively identifies
high-reward samples that precisely match the specified ob-
ject categories and quantities (additional qualitative results
are presented in Appendix G.2).

7. Conclusion
We introduced a novel inference-time scaling method for
flow models with three key contributions: (1) ODE-to-SDE
conversion for particle sampling, (2) Linear-to-VP inter-
polant conversion for enhanced diversity and search effi-
ciency, and (3) Rollover Budget Forcing (RBF) for adaptive
compute allocation. We demonstrated the effectiveness of
VP-SDE-based generation in applying off-the-shelf particle
sampling to flow models and showed that our RBF combined
with VP-SDE generation outperforms previous methods.

8

Acknowledgments
We thank Seungwoo Yoo and Juil Koo for providing con-
structive feedback of our manuscript. Thank you to Phillip
Y. Lee for helpful discussions on Vision Language Models.

References
[1] Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-

Eijnden. Stochastic interpolants: A unifying framework for
flows and diffusions. arXiv, 2023. 2, 5, 13

[2] Brian D.O. Anderson. Reverse-time diffusion equation mod-
els. Stochastic Processes and their Applications, 1982. 14

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xi-
aodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang,
Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayi-
heng Liu, Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma,
Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang,
Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang
Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan
Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023. 1

[4] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip
Sengupta, Micah Goldblum, Jonas Geiping, and Tom Gold-
stein. Universal guidance for diffusion models. In CVPRW,
2023. 3, 4

[5] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and
Sergey Levine. Training diffusion models with reinforcement
learning. arXiv, 2024. 3, 16

[6] Gabriel Cardoso, Yazid Janati El Idrissi, Sylvain Le Corff,
and Eric Moulines. Monte carlo guided diffusion for bayesian
linear inverse problems. In ICLR, 2024. 3

[7] Shoufa Chen, Chongjian Ge, Yuqi Zhang, Yida Zhang,
Fengda Zhu, Hao Yang, Hongxiang Hao, Hui Wu, Zhichao
Lai, Yifei Hu, Ting-Che Lin, Shilong Zhang, Fu Li, Chuan Li,
Xing Wang, Yanghua Peng, Peize Sun, Ping Luo, Yi Jiang,
Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Goku: Flow
based video generative foundation models. arXiv preprint
arXiv:2502.04896, 2025. 2

[8] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann,
Marc Louis Klasky, and Jong Chul Ye. Diffusion posterior
sampling for general noisy inverse problems. In ICLR, 2023.
3, 4, 15, 16

[9] Kevin Clark, Paul Vicol, Kevin Swersky, and Fleet David
J. Directly fine-tuning diffusion models on differentiable
rewards. In ICLR, 2024. 3

[10] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat
Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung,
and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. In NeurIPS, 2023.
7, 19

[11] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capabil-
ity in llms via reinforcement learning, 2025. 2

[12] Zehao Dou and Yang Song. Diffusion posterior sampling for

linear inverse problem solving: A filtering perspective. In
ICLR, 2024. 3

[13] Arnaud Doucet, Nando De Freitas, Neil James Gordon, et al.
Sequential Monte Carlo methods in practice. Springer, 2001.
17

[14] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim En-
tezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz,
Axel Sauer, Frederic Boesel, et al. Scaling rectified flow
transformers for high-resolution image synthesis, 2024. 2024.
2

[15] Luca Eyring, Shyamgopal Karthik, Karsten Roth, Alexey
Dosovitskiy, and Zeynep Akata. Reno: Enhancing one-step
text-to-image models through reward-based noise optimiza-
tion. In NeurIPS, 2024. 3

[16] Xiefan Guo, Jinlin Liu, Miaomiao Cui, Jiankai Li, Hongyu
Yang, and Di Huang. InitNO: Boosting text-to-image diffu-
sion models via initial noise optimization. In CVPR, 2024.
3

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2

[18] Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo
Li, and Xihui Liu. T2I-CompBench++: An Enhanced and
Comprehensive Benchmark for Compositional Text-to-Image
Generation . IEEE Transactions on Pattern Analysis Machine
Intelligence, 2025. 6, 16

[19] Dongfu Jiang, Max Ku, Tianle Li, Yuansheng Ni, Shizhuo
Sun, Rongqi Fan, and Wenhu Chen. Genai arena: An open
evaluation platform for generative models. arXiv, 2024. 6

[20] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine.
Elucidating the design space of diffusion-based generative
models. 2022. 5, 6

[21] Sunwoo Kim, Minkyu Kim, and Dongmin Park. Test-
time alignment of diffusion models without reward over-
optimization. In ICLR, 2025. 2, 3, 4, 6, 7, 8, 13, 17, 21,
23, 24

[22] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything. In ICCV, 2023. 8, 19, 20

[23] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Ma-
tiana, Joe Penna, and Omer Levy. Pick-a-pic: An open dataset
of user preferences for text-to-image generation. In NIPS,
2023. 2

[24] Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and
Marc Dymetmant. On reinforcement learning and distri-
bution matching for fine-tuning language models with no
catastrophic forgetting. In NeurIPS, 2022. 3

[25] Black Forest Labs. FLUX. https://github.com/
black-forest-labs/flux, 2024. 1, 2, 5, 6, 7, 8, 15

[26] Sergey Levine. Reinforcement learning and control as proba-
bilistic inference: Tutorial and review. arXiv, 2018. 4

[27] Xiner Li, Yulai Zhao, Chenyu Wang, Gabriele Scalia, Gok-
cen Eraslan, Surag Nair, Tommaso Biancalani, Aviv Regev,
Sergey Levine, and Masatoshi Uehara. Derivative-free guid-
ance in continuous and discrete diffusion models with soft
value-based decoding. arXiv, 2024. 2, 3, 4, 6, 7, 8, 13, 15, 16,
18, 19, 22, 23, 24

9

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

[28] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia,
Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Eval-
uating text-to-visual generation with image-to-text generation.
arXiv, 2024. 1, 2, 7, 8, 16, 19

[29] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maxi-
milian Nickel, and Matt Le. Flow matching for generative
modeling. In ICLR, 2023. 2, 4

[30] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul,
Matt Le, Brian Karrer, Ricky TQ Chen, David Lopez-Paz,
Heli Ben-Hamu, and Itai Gat. Flow matching guide and code.
arXiv preprint arXiv:2412.06264, 2024. 5, 6

[31] Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao
Zhang, Jie Yang, Chunyuan Li, Jianwei Yang, Hang Su, Jun
Zhu, et al. Grounding dino: Marrying dino with grounded
pre-training for open-set object detection. In ECCV, 2024. 1,
8, 16, 19, 20

[32] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight
and fast: Learning to generate and transfer data with rectified
flow. In ICLR, 2023. 2, 4, 6

[33] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and
qiang liu. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In ICLR, 2024. 2, 6

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps. In NIPS,
2022. 6

[35] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M
Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring
flow and diffusion-based generative models with scalable
interpolant transformers. In ECCV, 2024. 5, 13

[36] Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-
Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li, Tommi
Jaakkola, Xuhui Jia, and Saining Xie. Inference-time scaling
for diffusion models beyond scaling denoising steps. arXiv,
2025. 3, 6, 7, 8, 17, 23, 24

[37] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa
Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy
Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1:
Simple test-time scaling. arXiv preprint arXiv:2501.19393,
2025. 2

[38] OpenAI. Learning to Reason with LLMs. https:
//openai.com/index/learning-to-reason-
with-llms/, 2024. 2

[39] Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Ka-
terina Fragkiadaki. Aligning text-to-image diffusion models
with reward backpropagation. arXiv, 2023. 3

[40] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D
Manning, Stefano Ermon, and Chelsea Finn. Direct prefer-
ence optimization: Your language model is secretly a reward
model. In NIPS, 2023. 3

[41] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of Machine Learning
Research, 2020. 2

[42] Herbert E. Robbins. An Empirical Bayes Approach to Statis-
tics. Springer, 1992. 4, 6

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, 2022. 2, 6,
7

[44] C. Schuhmann. Laion aesthetics. https://laion.ai/
blog/laion-aesthetics, 2022. 1, 2, 7, 8, 15, 16

[45] Anuj Singh, Sayak Mukherjee, Ahmad Beirami, and Hadi
Jamali-Rad. Code: Blockwise control for denoising diffusion
models. arXiv, 2025. 2, 3, 6, 7, 8, 15, 18, 21, 23, 24

[46] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. 2015. 2

[47] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising
diffusion implicit models. ICLR, 2021. 6

[48] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equations.
In ICLR, 2021. 2, 5, 6

[49] Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul Christiano. Learning to summarize from human
feedback. In NeurIPS, 2020. 2, 3, 17

[50] Luming Tang, Nataniel Ruiz, Chu Qinghao, Yuanzhen Li,
Aleksander Holynski, David E Jacobs, Bharath Hariharan,
Yael Pritch, Neal Wadhwa, Kfir Aberman, and Michael Ru-
binstein. Realfill: Reference-driven generation for authentic
image completion. ACM TOG, 2024. 17

[51] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Am-
jad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya
Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cu-
curull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Is-
abel Kloumann, Artem Korenev, Punit Singh Koura, Marie-
Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich,
Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schel-
ten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams,
Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Au-
relien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. Llama 2: Open foundation and fine-tuned chat mod-
els. arXiv, 2023. 2, 3

[52] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Haji-
ramezanali, Gabriele Scalia, Nathaniel Lee Diamant, Alex M
Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning
of continuous-time diffusion models as entropy-regularized
control. arXiv, 2024. 3, 13

[53] Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali,
Gabriele Scalia, Gökcen Eraslan, Avantika Lal, Sergey
Levine, and Tommaso Biancalani. Bridging model-based
optimization and generative modeling via conservative fine-
tuning of diffusion models. In NeurIPS, 2024. 3, 4, 13,
16

10

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://laion.ai/blog/ laion- aesthetics
https://laion.ai/blog/ laion- aesthetics

[54] Bram Wallace, Akash Gokul, Stefano Ermon, and Nikhil Naik.
End-to-end diffusion latent optimization improves classifier
guidance. In ICCV, 2023. 3

[55] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou,
Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming
Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model align-
ment using direct preference optimization. In CVPR, 2024.
3

[56] Luhuan Wu, Brian L Trippe, Christian Naesseth, David Blei,
and John P Cunningham. Practical and asymptotically exact
conditional sampling in diffusion models. In NeurIPS, 2023.
3

[57] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai
Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward:
learning and evaluating human preferences for text-to-image
generation. In NeurIPS, 2023. 3, 15, 16

[58] Kai Yang, Jian Tao, Jiafei Lyu, Chunjiang Ge, Jiaxin Chen,
Qimai Li, Weihan Shen, Xiaolong Zhu, and Xiu Li. Using
human feedback to fine-tune diffusion models without any
reward model. In CVPR, 2024. 3

[59] Jiwen Yu, Yinhuai Wang, Chen Zhao, Bernard Ghanem, and
Jian Zhang. Freedom: Training-free energy-guided condi-
tional diffusion model. In ICCV, 2023. 3

[60] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen,
Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang
You. Open-sora: Democratizing efficient video production
for all, 2024. 2

11

Appendix

A. Proofs
A.1. Derivation of the Target Distribution
From Eq. 1, we obtain the target distribution p∗0, which maximizes the reward while maintaining proximity to the distribution
of the pretrained model p0:

p∗0(x0) = argmax
q

Ex0∼q [r(x0)]− βDKL [q(x0)|p0(x0)] ,

= argmax
q

Ex0∼q

[
r(x0)− β log

q(x0)

p0(x0)

]
= argmin

q
Ex0∼q

[
log

q(x0)

p0(x0)
− 1

β
r(x0)

]
= argmin

q

∫
q(x0) log

q(x0)

p0(x0)
dx0 −

1

β

∫
q(x0)r(x0)dx0.

This can be solved via calculus of variation where the functional J is given as follows:

J [q(x0)] :=

∫
q(x0)

(
log

q(x0)

p0(x0)
− 1

β
r(x0)

)
dx0.

Substituting q̃(x0, ϵ) := q(x0) + ϵη(x0) gives:

J [q̃(x0, ϵ)] =

∫
q̃(x0, ϵ)

(
log

q̃(x0, ϵ)

p0(x0)
− 1

β
r(x0)

)
dx0,

where η(x0) is an arbitrary smooth function, and ϵ is a scalar parameter.
Introducing a Lagrange multiplier λ to constraint

∫
q(x0)dx0 = 1 gives:

J [q̃(x0, ϵ)] =

∫
q̃(x0, ϵ)

(
log

q̃(x0, ϵ)

p0(x0)
− 1

β
r(x0)

)
+ λq̃(x0, ϵ)dx0

:=

∫
f{q̃;x0}dx0

Then the problem boils down to finding a function q̃(x0, ϵ) satisfying:

∂J
∂ϵ

∣∣∣∣
ϵ=0

= 0

This can be solved using the Euler-Lagrange equation:

∂f

∂q
− d

dx0

∂f

∂q′
= 0,

where q′ is a derivative of q with respect to x0 and tilde notation is dropped since the condition is to be satisfied at ϵ = 0.
Note that q′ does not appear in f , so the Euler-Lagrange equation simplifies to:

∂f

∂q
=

∂

∂q

(
q(x0)

(
log

q(x0)

p0(x0)
− 1

β
r(x0)

)
+ λq(x0)

)
= 0

= log
q(x0)

p0(x0)
− 1

β
r(x0) + 1 + λ = 0. (13)

Solving Eq. 13 gives the target distribution p∗0, which minimizes the objective function in Eq. 1:

p∗0(x0) = p0(x0) exp

(
r(x0)

β
− 1− λ

)
(14)

12

Lastly, the Lagrangian multiplier λ is obtained from the normalization constraint, exp(λ) =
∫
p0(x0) exp

(
r(x0)
β − 1

)
dx0.

Plugging this into Eq. 14 gives the target distribution presented in Eq. 2:

p∗0(x0) =
p0(x0) exp

(
r(x0)
β

)
∫
p0(x0) exp

(
r(x0)
β

)
dx0

, (15)

A.2. Derivation of the Optimal Policy
Here, we provide the derivations of the optimal policy given in Eq. 3 for completeness, which is proposed in previous
works [52, 53].

To sample from the target distribution defined in Eq. 15, previous studies utilize an optimal policy p∗θ(xt−∆t|xt). The
optimal value function v(xt) is defined as the expected future reward at current timestep t:

v(xt) = β logEx0∼pθ(x0|xt)

[
exp

(
r(x0)

β

)]
(16)

The optimal policy is the policy that maximizes the objective function:

p∗θ(xt−∆t|xt) = argmax
q

Eq [v(xt−∆t)]− βDKL [q(xt−∆t|xt)∥pθ(xt−∆t|xt)]

=
pθ(xt−∆t|xt) exp

(
1
β v(xt−∆t)

)
∫
pθ(xt−∆t|xt) exp

(
1
β v(xt−∆t)

)
dxt−∆t

(17)

=
pθ(xt−∆t|xt) exp

(
1
β v(xt−∆t)

)
exp

(
1
β v(xt)

) (18)

where the last equality follows from the soft-Bellman equations [53]. For completeness, we present the theorem.

Theorem 1. (Theorem 1 of Uehara et al. [53]). The induced distribution of the optimal policy in Eq. 17 is the target distribution
in Eq. 15.

p∗0(x0) =

∫ {
p1(x1)

1∏
s=T

p∗θ(x s
T − 1

T
|x s

T
)

}
dx 1

T :1.

However, computing the optimal value function in Eq. 16 is non-trivial. Hence, we follow the previous works [21, 27] and
approximate it using the posterior mean x0|t := Ex0∼pθ(x0|xt) [x0]:

v(xt) = β log

(∫
exp

(
r(x0)

β

)
pθ(x0|xt)dx0

)
≈ β log

(
exp

(
r(x0|t)

β

))
= r(x0|t). (19)

B. Choice of Diffusion Coefficient
Ma et al. [35] have shown that the diffusion coefficient can be chosen freely within the stochastic interpolant framework [1].
We present detailed derivations for completeness. Here, we use w interchangeably to denote the standard Wiener process for
both forward and reverse time flows.

Proposition 1. For a linear stochastic process xt = αtx0 + σtx1 and the Probability-Flow ODE dxt = ut(xt)dt that yields
the marginal density pt(xt), the following forward and reverse SDEs with an arbitrary diffusion coefficient gt ≥ 0 share the
same marginal density:

Forward SDE: dxt =

[
ut(xt) +

g2t
2
∇ log pt(xt)

]
dt+ gtdw (20)

Reverse SDE: dxt =

[
ut(xt)−

g2t
2
∇ log pt(xt)

]
dt+ gtdw. (21)

13

Proof. When velocity field ut generates a probability density path pt, it satisfies the continuity equation:

∂

∂t
pt(xt) = −∇ · (pt(xt)ut(xt)) . (22)

Similarly, for the SDE dxt = ft(xt)dt+ gtdw, the Fokker-Planck equation describes the time evolution of p̃t:

∂

∂t
p̃t(xt) = −∇ · (p̃t(xt)ft(xt)) +

1

2
g2t∇2p̃t(xt) (23)

where ∇2 denotes the Laplace operator.
To find an SDE that yields the same marginal probability density as the ODE, we equate the probability density functions in

Eq. 23 and Eq. 22, resulting in the following equation:

−∇ · (pt(xt)ft(xt)) +
1

2
g2t∇2pt(xt) = −∇ · (pt(xt)ut(xt))

∇ · (pt(xt)(ft(xt)− ut(xt))) =
1

2
g2t∇2pt(xt) (24)

This implies that any SDE with drift coefficient ft(xt) and diffusion coefficient gt that satisfies Eq. 24 will generate pt. One
particular choice is to set pt(xt)(ft(xt)− ut(xt)) proportional to∇pt(xt), i.e., pt(xt)(ft(xt)− ut(xt)) = At∇pt(xt). Then
Eq. 24 can be rewritten as:

At∇2pt(xt) =
1

2
g2t∇2pt(xt),

which leads to the relation At =
1
2g

2
t . Similarly, the drift coefficient is given by:

ft(xt) = ut(xt) +
1

2
g2t
∇pt(xt)

pt(xt)

= ut(xt) +
1

2
g2t∇ log pt(xt)

Thus, a family of SDEs that generate pt takes the following form:

dxt =

[
ut(xt) +

1

2
g2t∇ log pt(xt)

]
dt+ gtdw,

which is the forward SDE presented in Eq. 20. Similarly, the reverse SDE in Eq. 21 can be derived by applying the time
reversal formula, following Anderson [2].

In the experiment, for all SDEs, we use gt = t2, with its norm scaled by a factor of 3, which we found to work well for all
inference-time search algorithms.

C. Adaptive Time Scheduling and Rollover Strategy

In this section, we provide details of adaptive time scheduling and NFE analysis result which inspired rollover strategy.

Adaptive Time Scheduling. As discussed in Sec. 4.3, to maximize the exploration space in VP-SDE sampling, we design
the time scheduler to take smaller steps during the initial phase—when variance is high—and gradually increase the step size
in later stages. Specifically, we define the time scheduler as tnew =

√
1− (1− t)2. While this approach can be problematic

when the number of steps is too low—resulting in excessively large discretization steps in later iterations—we find that using a
reasonable number of steps (e.g., 10) works well in practice, benefiting from the few-step generation capability of flow models.
This setup effectively balances a broad exploration space with fast inference time, highlighting one of the key advantages of
flow models over diffusion models.

14

Figure 7. Analysis of number of function eval-
uations (NFEs) across timesteps. The NFEs
required to achieve a higher reward for each
timestep. The plot illustrates the ±1 sigma varia-
tion band. The blue-dotted line represents the
uniform allocation of compute (NFEs) across
timesteps. We observe that the NFEs required
to identify a higher-reward sample may exceed
the uniformly allocated budget (blue dotted line).

Table 3. Quantitative results of aesthetic image gener-
ation. † denotes the given reward used in inference time.
The relative improvement in each cell is computed with
respect to the base model. The best result in each row is
highlighted in bold.

Metric FLUX [25] DPS [8] SVDD [27]
+DPS [8]

RBF (Ours)
+DPS [8]

Aesthetic
Score† [44]

5.795 6.438
+11.10%

6.887
+18.85%

7.170
+23.73%

ImageReward
[57] (held-out)

0.991 0.605
–38.97%

1.077
+8.61%

1.152
+16.20%

FLUX [25] DPS [8] SVDD [27] + DPS [8] RBF (Ours)
+ DPS [8]

“Bird”

“Bat”

Figure 8. Qualitative results of aesthetic image generation. At inference-
time, we guide generate using the aesthetic score [44] as the given reward,
which assesses visual appeal.

NFE Analysis. As discussed in Sec. 5, we analyze the number of function evaluations (NFEs) required to obtain a sample
with a higher reward than the current one. In Fig. 7, we visualize the variance band of the required NFEs across timesteps, with
the blue-dotted line representing the uniform allocation used in previous particle sampling methods [27, 45]. Notably, uniform
compute allocation may constrain exploration and fail to identify high-reward samples, as evidenced by crossings within
the variance band. This observation motivates the use of a rollover strategy to optimize compute utilization efficiently. As
demonstrated in Sec. 6, our experiments confirm that RBF provides additional improvements over previous particle-sampling-
based methods [27, 45].

D. Additional Results

D.1. Aesthetic Image Generation

In this section, we demonstrate that inference-time scaling can also be applied to gradient-based methods, such as DPS [8],
for differentiable rewards. Specifically, we consider aesthetic image generation and show that RBF leads to synergistic
performance improvements. We first derive the formulation of the proposal distribution for differentiable rewards and then
present qualitative and quantitative results.

15

Table 4. Quantitative results of quantity-aware image generation
in NFE scaling expriment. We use the same 100 prompts from
T2I-CompBench [18] as in the quantity-aware image generation
task. † denotes the given reward used in the inference-time.

NFEs RSS† [31] ↓ Accuracy ↑ VQAScore [28]
(held-out) ↑

Aesthetic
Score [44] ↑

B
oN

50 4.360 0.400 0.758 5.408
100 3.280 0.510 0.750 5.522
300 2.190 0.570 0.755 5.463
500 1.760 0.580 0.756 5.420
1000 1.340 0.590 0.759 5.466

R
B
F

(O
ur

s) 50 3.250 0.410 0.756 5.560
100 1.860 0.590 0.760 5.627
300 0.690 0.720 0.779 5.503
500 0.540 0.800 0.769 5.581
1000 0.290 0.880 0.777 5.526 Figure 9. Scaling behavior comparison of BoN and RBF. We plot

the known reward (RSS) [31] against accuracy for different numbers
of function evaluations: {50, 100, 300, 500, 1, 000}. Note that the
horizontal axis is displayed on a logarithmic scale.

D.1.1. Gradient-Based Guidance
Uehara et al. [53] have shown that the marginal distribution p∗t (xt) is computed as follows:

p∗t (xt) ∝ exp

(
v(xt)

β

)
pt(xt) ≈ exp

(
r(x0|t)

β

)
pt(xt),

where the approximation follows from Eq. 19. When the reward is differentiable (e.g., aesthetic score [44]), one can simulate
samples from p∗t (xt) by computing its score function:

∇ log p∗t (xt) = ∇ log

[
exp

(
r(x0|t)

β

)
pt(xt)

]
=

1

β
∇r(x0|t)︸ ︷︷ ︸

Guidance

+∇ log pt(xt)︸ ︷︷ ︸
Pretrained Score

. (25)

For differentiable rewards, we incorporate the gradient-based guidance defined in Eq.25 into the SDE sampling process
described in Eq.7. Notably, this approach is orthogonal to inference-time scaling, and RBF can be additionally utilized to
further enhance performance. In the next section, we experimentally demonstrate that RBF can be effectively integrated with
gradient-based guidance.

D.1.2. Results
The aesthetic image generation task aims to sample images that best capture human preferences, such as visual appeal.
We use 45 animal prompts from previous work, DDPO [5]. The aesthetic score [44] serves as the given reward, while
ImageReward [57] is used as the held-out reward.

We present quantitative and qualitative results of aesthetic image generation in Tab.3 and Fig.8. Notably, RBF, implemented
with DPS [8], achieves significant improvements on both the given and held-out rewards, even surpassing SVDD [27].
Qualitatively, RBF effectively adapts the pretrained flow model to better align with human preferences, particularly in terms of
visual appeal.

D.2. Scaling Behavior Comparison
As discussed in Sec. 4, expanding the exploration space and applying budget forcing significantly enhance the efficiency of
RBF, leading to superior performance improvements over BoN. Here, we compare the scaling behavior of BoN, a representative
Linear-ODE-based method, with RBF across different numbers of function evaluations (NFEs).

16

We present qualitative and quantitative results of scaling behavior in quantity-aware image generation in Fig.9 and Tab. 4,
respectively. Our results indicate that allocating more compute leads to performance improvements for both BoN and RBF.
However, the accuracy of BoN plateaus after 300 NFEs, whereas RBF continues to scale and achieves an accuracy of 0.88.
Notably, RBF shows similar trend in the held-out reward, outperforming BoN and demonstrating its efficiency.

Figure 10. Schematics of inference-time search algorithms. Linear-ODE-based methods, BoN and SoP use a deterministic sampling
process, whereas particle-sampling-based methods follow a stochastic process. Note that RBF adaptively allocates NFEs across denoising
timesteps.

E. Search Algorithms

In this section, we introduce the inference-time search algorithms discussed in Sec.2 along with their implementation details.
An illustrative figure of the algorithms is provided in Fig.10. Here, we define the batch size (N) as the number of initial
latent samples and the particle size (K) as the number of samples drawn from the proposal distribution pθ(xt−∆t|xt) at each
denoising step.

Best-of-N (BoN) [49, 50] is a form of rejection sampling. Given N generated samples {x(i)
0 }Ni=1, BoN selects the

sample with the highest reward.

x0 = argmax
{x(i)

0 }N
i=1

r(x
(i)
0).

As presented in Sec. 6, we fixed the total compute budget to 500 NFEs and the number of denoising steps to 10, which sets the
batch size of BoN to N = 50.

Search over Paths (SoP) [36] begins by sampling N initial noises and running the ODE solver up to a predefined
timestep t0. Then the following two operations iterate until reaching t = 0:

1. Applying the forward kernel: For each sample in the batch at time t, K particles are sampled using the forward kernel,
which propagates them from t to t+∆f .

2. Solving the ODE: The resulting N ·K particles are then evolved from t+∆f to t+∆f −∆b by solving the ODE. The
top N candidates with the highest rewards are selected.

We followed the original implementations [36] for ∆f and ∆b. We used N = 2 and K = 5.

Sequential Monte Carlo (SMC) [13, 21] extends the idea of importance sampling to a time-sequential setting by maintaining
N samples and updating their importance weights over time:

w
(i)
t−∆t =

p∗θ(xt−∆t|xt)

q(xt−∆t|xt)
w

(i)
t =

pθ(xt−∆t|xt) exp
(
v(x

(i)
t−∆t)/β

)
q(xt−∆t|xt) exp

(
v(x

(i)
t)/β

) w
(i)
t ,

17

where q(xt−∆t|xt) is a proposal distribution and the last equality follows from the optimal policy Eq. 18. We used the reverse
process of the pretrained model as the proposal distribution, which leads to the following importance weight equation:

w
(i)
t−∆t =

exp
(
v(x

(i)
t−∆t)/β

)
exp

(
v(x

(i)
t)/β

) w
(i)
t . (26)

At each step when effective sample size
(∑N

j=1 w
(j)
t

)2

/
∑N

i=1(w
(i)
t)2 is below the threshold, we perform resampling, i.e.,

indices {a(i)t }Ni=1 are first sampled from a multinomial distribution based on the normalized importance weights:

{a(i)t }Ni=1 ∼ Multinomial

N,

{
w

(i)
t∑N

j=1 w
(j)
t

}N

i=1

 .

These ancestor indices a(i)t are then used to replicate high-weight particles and discard low-weight ones, yielding the resampled

set {x(a
(i)
t)

t }Ni=1. If resampling is not performed, the indices are simply set as a(i)t = i. Lastly, one-step denoised samples are

obtained from {x(a
(i)
t)

t }Ni=1:

x
(i)
t−∆t ∼ pθ(xt−∆t|x

(a
(i)
t)

t).

When resampling is performed, the importance weights are reinitialized to one, i.e., wt = 1. The importance weights for the
next step, wt−∆t are subsequently computed according to Eq. 26, regardless of whether resampling was applied.
We used N = 50 for all applications.

Controlled Denoising (CoDe) [45] extends BoN by incorporating an interleaved selection step after every L denoising steps.

xt−L∆t = argmax
{x(i)

t−L∆t}K
i=1

exp
(
v(x

(i)
t−L∆t)/β

)
We used N = 2, K = 25, and L = 2 for all applications.

SVDD [27] approximates the optimal policy in Eq. 3 by leveraging weighted K particles:

p∗θ(xt−∆t|xt) ≈
K∑
i=1

w
(i)
t−∆t∑K

j=1 w
(j)
t−∆t

δ
x
(i)
t−∆t

(27)

{x(i)
t−∆t}

K
i=1 ∼ pθ(xt−∆t|xt)

w
(i)
t−∆t = exp

(
v(x

(i)
t−∆t)/β

)
.

At each timestep, the approximate optimal policy in Eq. 27 is sampled by first drawing an index at−∆t from a categorical
distribution:

at−∆t ∼ Categorical

{
w

(i)
t−∆t∑K

j=1 w
(j)
t−∆t

}K

i=1

 (28)

This index is then used to select the sample from {x(i)
t−∆t}Ki=1, i.e., xt−∆t ← x

(at−∆t)
t−∆t . In practice, SVDD uses β = 0,

replacing sampling from the categorical distribution with a direct argmax operation, i.e., selecting the particle with the largest
importance weight. Following the original implementation [27], we used N = 2 and K = 25 for all applications.

Rollover Budget Forcing (RBF) adaptively allocates compute across denoising timesteps. At each timestep, when
a particle with a higher reward than the previous one is discovered, it immediately takes a denoising step, and the remaining

18

NFEs are rolled over to the next timestep, ensuring efficient utilization of the available compute. To maintain consistency with
SVDD [27], we set N = 2, with the compute initially allocated uniformly across all timesteps. We present the pseudocode for
sampling from the stochastic proposal distribution with interpolant conversion in Alg. 1. Specifically, the pseudocode for RBF
with SDE conversion and interpolant conversion is provided in Alg. 2. Here, we denote {S(i)}Mi=1 as a sequence of timesteps
in descending order, where S(1) = 1 and S(M) = 0, and M is the total number of denoising steps.

Algorithm 1: stoch_denoise: 1-step stochastic denoising

Inputs: original velocity field u, original interpolant

(α, σ), new interpolant (ᾱ, σ̄), diffusion

coefficient g, current sample x̄s, current

timestep s, denoising step size ∆s

Outputs: Stochastically denoised sample x̄s−∆s

1 ts ← ρ−1(ρ̄(s)) cs ← σ̄s/σts

2 ūs ← ċs
cs
x̄s + csṫsuts

(
x̄s

cs

)
// Eq. 12

3 ss ← 1
σ̄s

ᾱsūs− ˙̄αsx̄s
˙̄αsσ̄s−ᾱs ˙̄σs

// Eq. 9

4 fs = ūs − g2
s

2 ss // Eq. 8

5 z ∼ N (0, I)

6 x̄s−∆s ← x̄s − fs∆s+ gs
√
∆s z

Algorithm 2: Rollover Budget Forcing (RBF)
Inputs: Number of denoising steps M , timesteps

{S(i)}Mi=1, NFE quota {Q(i)}Mi=1

Outputs: Aligned sample x̄0

1 x̄1 ∼ N (0, I) r∗ ← r(x̄0|1)

2 for i ∈ {1, . . . ,M} do
3 s← S(i) ∆s← S(i) − S(i+1) q ← Q(i)

4 for j ∈ {1, . . . , q} do
5 x̄

(j)
s−∆s ← stoch_denoise (x̄s, s,∆s) // Alg. 1

6 if r∗ < r(x̄
(j)
0|s−∆s) then

7 Q(i+1) ← Q(i+1) +Q(i) − j // Sec. 5
8 r∗ ← r(x̄

(j)
0|s−∆s) x̄s−∆s ← x̄

(j)
s−∆s

9 break
10 if j = q then
11 k∗ ← argmaxk∈{1,...,q} r(x̄

(k)
0|s−∆s)

12 x̄s−∆s ← x̄
(k∗)
s−∆s

F. Implementation Details
F.1. Compositional Text-to-Image Generation
In the compositional text-to-image generation task, we use the VQAScore metric as the reward, which evaluates image-text
alignment using a visual question-answering (VQA) model (CLIP-FlanT5 [28] and InstructBLIP [10]). Specifically, VQAScore
measures the probability that a given attribute or object is present in the generated image. To compute the reward, we scale the
probability value by setting β = 0.1 in Eq. 3.

F.2. Quantity-Aware Image Generation
In quantity-aware image generation, text prompts specify objects along with their respective quantities. To generate images
that accurately match the specified object counts, we use the negation of the Residual Sum of Squares (RSS) as the given
reward. Here, RSS is computed to measure the discrepancy between the detected object count Ĉi and the target object count
Ci specified in the given text prompt:

RSS =

n∑
i=1

(
Ci − Ĉi

)2

,

where n is the total number of object categories in the prompt. We additionally report accuracy, which is defined as 1 when
RSS = 0 and 0 otherwise. For the held-out reward, we report VQAScore measured with CLIP-FlanT5 [28] model.

Object Detection Implementation Details. To compute the given reward, RSS, it is necessary to detect the number of
objects per category, Ĉi. Here, we leverage the state-of-the-art object detection model, GroundingDINO [31] and the object
segmentation model SAM [22], which is specifically used to filter out duplicate detections.

We observe that naïvely using the detection model [31] to compute RSS leads to poor detection accuracy due to two
key issues: inner-class duplication and cross-class duplication. Inner-class duplication occurs when multiple detections are

19

assigned to the same object within a category, leading to overcounting. This often happens when an object is detected both
individually and as part of a larger group. Cross-class duplication arises when an object is assigned to multiple categories due
to shared characteristics (e.g., a toy airplane being classified as both a toy and an airplane), making it difficult to assign it to a
single category.

To address inner-class duplication, we refine the object bounding boxes detected by GroundingDINO [31] using SAM [22]
and filter out overlapping detections. Smaller bounding boxes are prioritized, and larger ones that significantly overlap with
existing detections are discarded. This ensures that each object is counted only once within its category. To resolve cross-class
duplication, we assign each object to the category with the highest GroundingDINO [31] confidence score. This ensures that
objects are classified into a single category, preventing double counting across multiple classes.

More qualitative results are presented in the following pages.

20

G. Additional Qualitative Results
G.1. Comparisons of Inference-Time SDE Conversion and Interpolant Conversion

L.O. L.S. V.S. L.O. L.S. V.S.
“Four balloons, one cup, four desks, two dogs and four microwaves.” “Four candles, two balloons, one dog, two tomatoes and three helicopters.”

SM
C

[2
1]

Q
ua

nt
ity

“Four rabbits, three apples, two mice and four televisions.” “Seven pigs snorted and played in the mud.”

SM
C

[2
1]

Q
ua

nt
ity

“Two frogs in tracksuits, competing in a high jump.
The frog in blue tracksuit jumps higher than the frog not in blue tracksuit.” “Three small, non-blue boxes on a large blue box.”

SM
C

[2
1]

C
om

po
si

tio
n

L.O. L.S. V.S. L.O. L.S. V.S.
“Seven helmets” “Four couches, three candles, two fish, one frog and three plates.”

C
oD

e
[4

5]
Q

ua
nt

ity

“Seven lamps.” “Seven desks.”

C
oD

e
[4

5]
Q

ua
nt

ity

“In a collection of hats, each one is plain, but one is adorned with feathers.” “Five origami cranes hang from the ceiling,
only one of which is red, and the others are all white.”

C
oD

e
[4

5]
C

om
po

si
tio

n

Figure 11. Qualitative comparisons of inference-time SDE conversion and interpolant conversion. Each column represents Linear-ODE
(L.O.), Linear-SDE (L.S.), and VP-SDE (V.S.).

21

L.O. L.S. V.S. L.O. L.S. V.S.
“Four balloons, one cup, four desks, two dogs and four microwaves.” “Five hamburgers sizzled on the grill.”

SV
D

D
[2

7]
Q

ua
nt

ity

“Two men, four vases, four chickens and four ships.” “Six bicycles.”

SV
D

D
[2

7]
Q

ua
nt

ity

“Two people and two bicycles in the street,
the bicycle with the larger wheels belongs to the taller person.”

“There are two cups on the table, the cup without coffee
is on the left of the other filled with coffee.”

SV
D

D
[2

7]
C

om
po

si
tio

n

L.O. L.S. V.S. L.O. L.S. V.S.
“Two giraffes, three eggs, two breads, three microwaves and four strawberries.” “Four pears, four desks, three paddles and two rabbits.”

R
B
F

(O
ur

s)
Q

ua
nt

ity

“One egg, three camels, four cars and four pillows.” “Seven women.”

R
B
F

(O
ur

s)
Q

ua
nt

ity

“Three sailboats on the water, each with sails of a different color.” “Two birds are chasing each other in the air, with the one
flying higher having a long tail and the other bird having a short tail.”

R
B
F

(O
ur

s)
C

om
po

si
tio

n

Figure 12. Qualitative comparisons of inference-time SDE conversion and interpolant conversion. Each column represents Linear-ODE
(L.O.), Linear-SDE (L.S.), and VP-SDE (V.S.).

22

G.2. Comparisons of Inference-Time Scaling

BoN SoP [36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)
“In a room, all the chairs are occupied except one.”

“In a pack of wolves, each one howls at the moon, but one remains silent.”

“An open biscuit tin contains three biscuits, one without sultanas is square-shaped and the other two are round-shaped.”

“A rose that is not fully bloomed is higher than a rose that is already in bloom.”

“There are two colors of pots in the flower garden; all green pots have tulips in them and all yellow pots have no flowers in them.”

“Two dragons fly towards the castle, a dragon with a backpack and no hat on the left of the dragon without a backpack and with a hat.”

Figure 13. Additional qualitative results of compositional text-to-image generation task.

23

BoN SoP [36] SMC [21] CoDe [45] SVDD [27] RBF (Ours)
“Eight apples, three bicycles and five rabbits.”

“Six helicopters buzzed over eight pillows.”

“Five swans and seven ducks swam in the pond.”

“Four drums, seven tomatoes, and five candles.”

“Three chickens, four birds, and eight pears.”

“Six airplanes flying over a desert with seven camels walking below.”

Figure 14. Additional qualitative results of quantity-aware image generation task.

24

	Introduction
	Related Work
	Reward Alignment in Diffusion Models
	Particle Sampling with Diffusion Models
	Inference-Time Scaling with Flow Models

	Problem Definition and Background
	Inference-Time Reward Alignment
	Particle Sampling Using Diffusion Model

	SDE-Based Generation Using Flow Models
	Background: Stochastic Interpolant Framework
	Inference-Time SDE Conversion
	Inference-Time Interpolant Conversion

	Rollover Budget Forcing
	Applications
	Experiment Setup
	Compositional Text-to-Image Generation
	Quantity-Aware Image Generation

	Conclusion
	Proofs
	Derivation of the Target Distribution
	Derivation of the Optimal Policy

	Choice of Diffusion Coefficient
	Adaptive Time Scheduling and Rollover Strategy
	Additional Results
	Aesthetic Image Generation
	Gradient-Based Guidance
	Results

	Scaling Behavior Comparison

	Search Algorithms
	Implementation Details
	Compositional Text-to-Image Generation
	Quantity-Aware Image Generation

	Additional Qualitative Results
	Comparisons of Inference-Time SDE Conversion and Interpolant Conversion
	Comparisons of Inference-Time Scaling

